Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Poly[tetraaquadi- μ_{3}-malonatocobalt(II)calcium(II)]

Assia Djeghri, ${ }^{\text {a }}$ Fadila Balegroune, ${ }^{\text {a } *}$ Achoura Guehria Laidoudi ${ }^{\text {a }}$ and Loic Toupet ${ }^{\text {b }}$

${ }^{\text {a }}$ Laboratoire de Crystallographie-Thermodynamique, Faculté de Chimie, USTHB, BP 32, El-Alia, Bab-Ezzouar, 16111 Alger, Algeria, and ${ }^{\text {b }}$ Groupe Matière Condensée et Matériaux, UMR CNRS 6626, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
Correspondence e-mail: fadilabalegroune@yahoo.fr

Received 21 November 2005
Accepted 31 January 2006
Online 11 March 2006
The structure of the polymeric title compound, $[\mathrm{CaCo}-$ $\left.\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$, consists of CaO_{8} and CoO_{6} polyhedra linked together by malonate groups. The Co atom lies on a centre of symmetry in an octahedral arrangement, and is coordinated by four malonate O atoms in a planar arrangement and two water molecules in a trans conformation. The geometry around the Ca atom, which lies on a twofold axis, may be described as a distorted square antiprism, which involves two water molecules and six malonate O atoms. The $\mathrm{Co}-\mathrm{O}$ and $\mathrm{Ca}-\mathrm{O}$ bond lengths are in the ranges 2.0711 (12)2.1004 (14) and 2.3775 (12)-2.6329 (12) Å, respectively.

Comment

The most commonly employed synthetic design strategy that is used to assemble coordination frameworks is the buildingblock methodology, which relies on utilizing the specific geometries of both metal cations and ligands. Typically, dicarboxylate ligands, such as malonate, have been used to construct coordination polymers by acting as chelating bidentate ligands or as simple bridges between metal centres. Consequently, a great number of homo- or heteronuclear malonate complexes are well known and structurally characterized (Alderighi et al., 1999; Barbaro et al., 1997; Benmerad et al., 2000; Filippova et al., 2000; Gil de Muro et al., 1998, 1999, 2000; Hodgson \& Asplund, 1991; RodriguezMartin et al., 2002; Ruiz-Perez, Hernandez-Molina et al., 2000; Ruiz-Perez, Sanchiz et al., 2000; Tapparo et al., 1996; Zhang et al., 2000). In the course of our study of heterobimetallic malonate complexes involving transition and alkaline-earth metals, we have synthesized the complex poly[tetraaquadi- $\mu_{3^{-}}$ malonato-cobalt(II)calcium(II)], (I), which has already been reported (Gil de Muro et al., 2000), although its crystal structure has not been determined until now.

A single-crystal X-ray diffraction study reveals that the title compound consists of a honeycomb framework built up from calcium(II), cobalt(II) malonate and water molecules. A view
of the coordination around the two metal centres is shown in Fig. 1. The Co atom lies on a crystallographic inversion centre and has an octahedral coordination, involving four O atoms from two bidentate malonate ligands in a planar arrangement and two water O atoms in axial positions. The bond lengths in

the coordination polyhedron of the $\mathrm{Co}^{\mathrm{II}}$ atoms are quite similar. The equatorial $\mathrm{Co}-\mathrm{O}$ bonds, ranging from 2.0711 (12) to 2.0900 (11) Å, have a mean value of 2.081 (9) Å, while the axial Co-O distances are 2.1004 (14) \AA (Table 1). The $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ bond angles range from 87.30 (5) to $92.70(5)^{\circ}$ and deviate little from ideal octahedral geometry. These bond lengths and angles agree well with those previously reported for other cobalt(II) complexes containing carboxylate ligands (Gil de Muro et al., 1998, 1999; Livage et al., 1998, 1999; Suresh et al., 1997; Zheng \& Lin, 2000; Zheng et al., 2000). The sixmembered chelate rings $\mathrm{Co} / \mathrm{O} 2 / \mathrm{C} 1-\mathrm{C} 3 / \mathrm{O} 3$ and $\mathrm{Co} / \mathrm{O} 22^{\mathrm{ii}} / \mathrm{C1}^{\mathrm{ii}}$ -

Figure 1
A view of the coordination polyhedra for calcium and cobalt ions in (I), showing the atom numbering (50% probability displacement ellipsoids). Hydrogen bonds are shown as dotted lines. [Symmetry codes: (i) $-x, y$, $-z+\frac{1}{2}$; (ii) $-x,-y,-z$.]
$\mathrm{C} 3{ }^{\mathrm{ii}} / \mathrm{O}^{\text {ii }}$ [symmetry code: (ii) $-x,-y,-z$] have boat conformations, with atoms Co and C2 lying 0.44 and $0.48 \AA$, respectively, out of the $\mathrm{C} 1 / \mathrm{O} 2 / \mathrm{C} 3 / \mathrm{O} 3$ mean plane.

The Ca atom, lying on a twofold axis, is coordinated by two water molecules (O6 and O6 ${ }^{\mathrm{i}}$), two bridging carboxyl O atoms [O1 and O1 ${ }^{\mathrm{i}}$; symmetry code: (i) $-x, y,-z+\frac{1}{2}$] and the O atoms of two chelated carboxyl groups ($\mathrm{O} 3 / \mathrm{C} 3 / \mathrm{O} 4$ and $\mathrm{O}^{\mathrm{i}} /$ $\mathrm{C} 3^{i} / \mathrm{O} 4^{\mathrm{i}}$). The geometry around the $\mathrm{Ca}^{\mathrm{II}}$ atom may be described as a distorted square antiprism. The four-membered chelate ring linked to the Ca atom is bonded to the sixmembered ring involving the Co atom via the $\mathrm{C} 3-\mathrm{O} 3$ bond. The $\mathrm{Ca}-\mathrm{O}$ bond lengths differ in the chelating and bridging malonate groups. While the bridging carboxylate $\mathrm{Ca}-\mathrm{O} 1$ bond lengths [2.3775 (12) Å] are similar to the $\mathrm{Ca}-\mathrm{O}_{\text {water }}$ distances $[\mathrm{Ca}-\mathrm{O} 6=2.3970(14) \AA$] , the $\mathrm{Ca}-\mathrm{O}$ bonds of the chelating malonate ligands are quite different [2.4410 (13) to 2.6329 (12) \AA]. The longest $\mathrm{Ca}-\mathrm{O}$ distance is observed for the $\mathrm{Ca}-\mathrm{O} 3$ bond, atom O 3 being three-coordinated to one Ca atom, one Co atom and one C atom. The increase of these bond lengths is related to the requirements of the conformation of the fused-ring system.

Each Ca atom is connected to two Ca atoms through biscarboxylate bridges, defining infinite chains of CaO_{8} polyhedra, running parallel to the [010] axis and forming 12membered binuclear rings, viz. $[\mathrm{Ca} / \mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 3 / \mathrm{O} 4]_{2}$. The $\mathrm{Ca} \cdots \mathrm{Ca}$ separation within these rings is 7.531 (12) \AA. The same carboxylate bridges bind each Ca atom to four Co atoms, leading to the formation of 12-membered tetranuclear rings, viz. $[\mathrm{Ca} / \mathrm{Co} / \mathrm{O} 1 / \mathrm{C} 1 / \mathrm{O} 2 / \mathrm{O} 3]_{2}$. The $\mathrm{Ca} \cdots \mathrm{Ca}$ and $\mathrm{Co} \cdots \mathrm{Co}$ separations within these rings are, respectively, 7.054 (1) and 7.531 (1) \AA, while the $\mathrm{Ca} \cdots$ Co distances are shorter at 5.7945 (6) and 4.4340 (5) A. The two carboxylate groups have the same dimensions, with a mean value of 1.257 (2) \AA, and are inclined at 40.4 (1) $)^{\circ}$ to each other.

The crystal structure may be described as a three-dimensional network. The two different 12 -membered rings create wide channels. The two crystallographically independent water molecules are hydrogen bonded to the carboxyl O atoms, and the supramolecular assembly of this heterobinuclear complex is realized by this hydrogen bonding (Table 2 and Fig. 1).

Experimental

Malonic acid ($0.208 \mathrm{~g}, 2 \mathrm{mmol}$), $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.238 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Ca}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(0.315 \mathrm{~g}, 1 \mathrm{mmol})$ were successively dissolved in water (100 ml) under continuous stirring. A pink solution was obtained after filtration and the filtrate was kept at 313 K. Pink prismatic crystals had grown after several weeks.

Crystal data

```
\(\left[\mathrm{CaCo}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\)
\(M_{r}=375.17\)
Monoclinic, \(C 2 / c\)
\(a=13.874\) (2) A
\(b=7.531\) (1) \(\AA\)
\(c=13.615(2) \AA\)
\(\beta=122.94(2)^{\circ}\)
\(V=1193.9(4) \AA^{3}\)
\(Z=4\)
```

$D_{x}=2.087 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=5.4-13.6^{\circ}$
$\mu=1.93 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism, pink
$0.26 \times 0.22 \times 0.14 \mathrm{~mm}$

Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.660, T_{\text {max }}=0.768$
1353 measured reflections
1300 independent reflections
1177 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.007 \\
& \theta_{\text {max }}=27.0^{\circ} \\
& h=0 \rightarrow 17 \\
& k=0 \rightarrow 9 \\
& l=-17 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.050$
$S=1.11$
1300 reflections
110 parameters
H atoms: see below

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0246 P)^{2}\right. \\
& \quad+0.8504 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0020(4)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{Ca}-\mathrm{O} 1$	2.3775 (12)	O1-C1	1.2500 (18)
Ca-O6	2.3970 (14)	$\mathrm{O} 2-\mathrm{C} 1$	1.2681 (19)
$\mathrm{Ca}-\mathrm{O}^{\text {iii }}$	2.4410 (13)	O3-C3	1.2623 (19)
$\mathrm{Ca}-\mathrm{O}^{\text {iii }}$	2.6329 (12)	O4-C3	1.2476 (19)
Co-O3	2.0711 (12)	C2-C3	1.509 (2)
Co-O2	2.0900 (11)	C2-C1	1.511 (2)
Co-O5	2.1004 (14)		
$\mathrm{O} 1^{\text {iv }}-\mathrm{Ca}-\mathrm{O} 1$	88.80 (6)	$\mathrm{O} 3-\mathrm{Co}-\mathrm{O} 2$	87.30 (5)
$\mathrm{O}^{\text {iv }}-\mathrm{Ca}-\mathrm{O} 6$	78.05 (5)	$\mathrm{O} 2-\mathrm{Co}-\mathrm{O}^{\text {vi }}$	88.59 (5)
O1-Ca-O6	78.29 (5)	$\mathrm{O} 3-\mathrm{Co}-\mathrm{O} 5$	90.68 (6)
O6 ${ }^{\text {iv }}-\mathrm{Ca}-\mathrm{O} 6$	146.66 (7)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ca}$	135.95 (10)
$\mathrm{O} 1-\mathrm{Ca}-\mathrm{O} 4{ }^{\text {iii }}$	89.93 (4)	C1-O2-Co	127.49 (10)
$\mathrm{O} 6-\mathrm{Ca}-\mathrm{O} 4{ }^{\text {iii }}$	77.99 (5)	C3-O3-Co	127.06 (10)
$\mathrm{O} 1-\mathrm{Ca}-\mathrm{O}^{\text {v }}$	155.76 (4)	$\mathrm{C} 3-\mathrm{O} 3-\mathrm{Ca}^{\text {vii }}$	88.26 (9)
$\mathrm{O} 6-\mathrm{Ca}-\mathrm{O}^{\text {v }}$	125.01 (5)	$\mathrm{Co}-\mathrm{O} 3-\mathrm{Ca}^{\text {vii }}$	140.69 (5)
$\mathrm{O} 4^{\text {iii }}-\mathrm{Ca}-\mathrm{O}^{\mathrm{v}}$	100.82 (6)	$\mathrm{C} 3-\mathrm{O} 4-\mathrm{Ca}^{\text {vii }}$	97.63 (10)
$\mathrm{O} 1-\mathrm{Ca}-\mathrm{O}^{\text {v }}$	153.40 (4)	C3-C2-C1	116.97 (13)
$\mathrm{O} 6-\mathrm{Ca}-\mathrm{O}^{\text {v }}$	77.03 (4)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	123.31 (14)
$\mathrm{O} 4^{\text {iii }}-\mathrm{Ca}-\mathrm{O}^{\text {v }}$	75.38 (4)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	116.83 (13)
$\mathrm{O} 4^{\mathrm{v}}-\mathrm{Ca}-\mathrm{O}^{\mathrm{v}}$	50.73 (4)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	119.81 (13)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Ca}-\mathrm{O} 3^{\text {iii }}$	153.40 (4)	$\mathrm{O} 4-\mathrm{C} 3-\mathrm{O} 3$	120.61 (14)
$\mathrm{O} 1-\mathrm{Ca}-\mathrm{O}^{\text {iii }}$	95.65 (4)	O4-C3-C2	117.91 (13)
$\mathrm{O} 6-\mathrm{Ca}-\mathrm{O}^{\text {iii }}$	128.54 (4)	O3-C3-C2	121.47 (14)
$\mathrm{O}^{\text {v }}-\mathrm{Ca}-\mathrm{O}^{\text {iii }}$	92.00 (6)		

Symmetry codes: (iii) $x, y-1, z$; (iv) $-x+1, y,-z+\frac{1}{2}$; (v) $-x+1, y-1,-z+\frac{1}{2}$; (vi)
$-x+1,-y+1,-z+1$; (vii) $x, y+1, z$.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1^{\text {viii }}$	0.77 (3)	2.16 (3)	2.920 (2)	173 (3)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 4^{\text {ix }}$	0.78 (3)	2.00 (3)	2.773 (2)	169 (3)
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\text {iv }}$	0.84 (3)	1.98 (3)	2.7905 (18)	161 (2)
$\mathrm{O} 6-\mathrm{H} 6 B \cdots \mathrm{O} 2^{\mathrm{x}}$	0.75 (3)	2.33 (3)	3.0388 (19)	159 (3)

Symmetry codes: (iv) $-x+1, y,-z+\frac{1}{2}$; (viii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ix) $x,-y+1, z+\frac{1}{2}$; (x) $x,-y, z-\frac{1}{2}$.

H atoms bonded to C atoms were included in geometrically idealized positions using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms bonded to O atoms were found by difference Fourier methods and refined isotropically.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97

metal-organic compounds

(Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ1082). Services for accessing these data are described at the back of the journal.

References

Alderighi, L., Cecconi, F., Ghilardi, C. A., Mederos, A., Midollini, S., Orlandini, A. \& Vacca, A. (1999). Polyhedron, 18, 3305-3312.
Barbaro, P., Cecconi, F., Ghilardi, C. A., Midollini, S., Orlandini, A., Alderighi, L., Peters, D., Vacca, A., Chinea, E. \& Mederos, A. (1997). Inorg. Chim. Acta, 262, 187-194.
Benmerad, B., Guehria-Laidoudi, A., Bernardinelli, G. \& Balegroune, F. (2000). Acta Cryst. C56, 321-323.

Enraf-Nonius (1993). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Filippova, I. G., Kravtsov, V. K. \& Gdanec, M. (2000). Russ. J. Coord. Chem. 26, 809-816.
Gil de Muro, I., Insausti, M., Lezama, L., Pizzaro, J. L., Arriortua, M. I. \& Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935-943.
Gil de Muro, I., Insausti, M., Lezama, L., Urtiaga, M. K., Arriortua, M. I. \& Rojo, T. (2000). J. Chem. Soc. Dalton Trans. pp. 3360-3364.

Gil de Muro, I., Mautner, F. A., Insausti, M., Lezama, L., Arriortua, M. I. \& Rojo, T. (1998). Inorg. Chem. 37, 3243-3251.
Harms, K. \& Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.
Hodgson, D. J. \& Asplund, R. G. (1991). Inorg. Chem. 30, 3577-3580.
Livage, C., Egger, C. \& Ferey, G. (1999). Chem. Mater. 11, 1546-1550.
Livage, C., Egger, C., Nogues, M. \& Ferey, G. (1998). Chem. Mater. 8, 27432747.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rodriguez-Martin, Y., Sanchez, J., Ruiz-Perez, C., Lloret, F. \& Julve, M. (2002). CrystEngComm, 4, 631-637.

Ruiz-Perez, C., Hernandez-Molina, M., Lorenzo-Luis, P., Lloret, F., Cano, J. \& Julve, M. (2000). Inorg. Chem. 39, 3845-3852.
Ruiz-Perez, C., Sanchiz, J., Hernandez-Molina, M., Lloret, F. \& Julve, M. (2000). Inorg. Chem. 39, 1363-1370.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Suresh, E., Bhadbhade, M. M. \& Vankatasubramanian, K. (1997). Polyhedron, 16, 3941-3946.
Tapparo, A., Heath, S. L., Jordan, P. A., Moore, G. R. \& Powell, A. K. (1996). J. Chem. Soc. Dalton Trans. pp. 1601-1606.

Zhang, Y. J., Collison, D., Livens, F. R., Powell, A. K., Wocadlo, S. \& Eccles, H. (2000). Polyhedron, 19, 1757-1767.

Zheng, Y. Q. \& Lin, J. L. (2000). Z. Kristallogr. New Cryst. Struct. 215, 159160.

Zheng, Y. Q., Lin, J. L., Sun, J. \& Pan, A. Y. (2000). Z. Kristallogr. New Cryst. Struct. 215, 161-162.

